Newtonian fluid flow through Microfabricated Hyperbolic Contractions

نویسندگان

  • Mónica S. Neves Oliveira
  • Manuel A. Alves
  • Fernando T. Pinho
  • Gareth H. McKinley
چکیده

We study the flow of a Newtonian fluid through microfabricated hyperbolic contractions in detail. A set of planar converging geometries, with total Hencky strains ranging from 1 to 3.7, have been fabricated in order to produce a homogeneous extensional flow field within the contraction. The kinematics in the contraction region are investigated experimentally by means of micro particle image velocimetry (μPIV). Using this laser based technique, we are able to characterize quantitatively the velocity field at a given plane in the hyperbolic contraction region. The pressure drop across the converging geometry was also measured and was found to vary approximately linearly with the flow rate. Additionally, an extensive range of numerical calculations was carried out using a finite-volume method. The experimental results of velocity fields in the contraction and associated pressure drops compare very well with those predicted numerically. For the typical dimensions used in microfluidics, the flow is shown to be three-dimensional. Furthermore, we demonstrate that regions with nearly constant strain rate can only be achieved using geometries with large total Hencky strains under HeleShaw (potential-like) flow conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Fluid Flow and Heat Transfer of AL2O3-Water as a Non-Newtonian Nanofluid through Lid-Driven Enclosure

Flow field and heat transfer of a nanofluid, whose non-Newtonian behavior has been demonstrated in the laboratory, in a square enclosure have been numerically modeled and investigated. To estimate the viscosity of nanofluid, experimental data of Hong and Kim, 2012 have been used, and a new model has been proposed. Finally, the obtained results have been compared to those of Newtonian behavior. ...

متن کامل

Extensional flow of blood analog solutions in microfluidic devices.

In this study, we show the importance of extensional rheology, in addition to the shear rheology, in the choice of blood analog solutions intended to be used in vitro for mimicking the microcirculatory system. For this purpose, we compare the flow of a Newtonian fluid and two well-established viscoelastic blood analog polymer solutions through microfluidic channels containing both hyperbolic an...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Mathematical modelling of Sisko fluid flow through a stenosed ‎artery

In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...

متن کامل

Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery

Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006